Acta Cryst. (1965). 19, 548

The Crystal Structure of Catena-di-µ-hydrazine-Zinc Diacetate

BY A. FERRARI, A. BRAIBANTI, G. BIGLIARDI AND A. M. LANFREDI

Centro di Strutturistica Roentgenografica del C. N. R., Sezione di Parma, 1° Reparto. – Istituto di Chimica generale e Istituto di Mineralogia dell'Università di Parma, Italy

(Received 25 January 1965)

The crystal structure of catena-di- μ -hydrazine-zinc diacetate has been determined. The refinement has been carried out by three-dimensional differential syntheses. The structure is composed of chains of slightly distorted octahedral complexes $[Zn(N_2H_4)_{4/2}(CH_3COO)_2]$. The distances between zinc and nitrogen are Zn-N(1)=2.179 Å and Zn-N(2)=2.206 Å and the distance between zinc and oxygen is Zn-O(1)=2.147 Å. The octahedra are held together in the chain by two bridges of hydrazine. The hydrazine molecule is staggered and the distance between nitrogen atoms is N(1)-N(2)=1.458 Å. The acetate group is perfectly planar. The distances C(1)-O(1)=1.264 Å and C(1)-O(2)=1.250 Å are comparable to those in similar compounds in which the environments of O(1) and O(2) are equivalent.

Introduction

The crystal structures of compounds with general formula $[M^{II} (N_2H_4)_2]X_2$, where $M^{II} = Cd,Zn,Ni,Co,Fe,Mn$ and $X = Cl,NCS,Br,I,CH_3COO$, etc. present the common feature of being formed by chains of complexes $[M^{II} (N_2H_4)_{4/2}X_2]$ extending throughout the crystal in one direction (Ferrari, Braibanti & Bigliardi, 1962, 1963; Ferrari, Braibanti, Bigliardi & Dallavalle, 1963; Ferrari, Braibanti, Bigliardi & Lanfredi, 1965). Therefore, these compounds can be considered as catena-di- μ hydrazine-divalent-metal salts, $[M^{II} (N_2H_4)_2]_nX_{2n}$ (Nomenclature of Inorganic Chemistry, 1959). The crystals are very often twinned.

A thorough examination of this class of structure has been undertaken in order to clarify some important aspects of the chemical bonds implied in them and, moreover, to explain, if possible, the twinning laws or the absence of twinning on a structural basis (Braibanti, Bigliardi, Lanfredi & Camellini, 1964).

The study of the crystal structure of catena-di- μ -hydrazine-zinc diacetate, $[Zn(N_2H_4)_2]_n(CH_3COO)_{2n}$, is presented here.

Experimental

The crystals of $[Zn(N_2H_4)_2]_n(CH_3COO)_{2n}$ were obtained by mixing aqueous ammonia, hydrazine hydrate and an aqueous solution of zinc acetate (Ferrari, Braibanti, Bigliardi & Lanfredi, 1963). The crystals are often, but not always, twinned and are isostructural with the corresponding cadmium and manganese compounds.

The unit-cell constants have been found to be: $a=6.58\pm0.02$, $b=8.52\pm0.01$, $c=4.14\pm0.01$ Å; $\alpha=90^{\circ}$, $\beta=90^{\circ}$ 25' ± 5', $\gamma=96^{\circ}$ 52' + 12'.

One stoichiometric unit $[Zn(N_2H_4)_2](CH_3COO)_2$ is contained in the unit cell. The calculated and observed density are: $\rho_c = 1.783$ g.cm⁻³, $\rho_o = 1.798$ g.cm⁻³. The space group is $P\bar{1}$.

The intensities of the reflexions hk0, hk1, hk2, hk3were taken by rotating a very thin needle around [001]. A Weissenberg camera (Cu K α radiation) was used, the multiple-film technique being applied. The blackening of the integrated spots was determined by a microphotometer. (Observed reflexions: 788). The corrections for polarization, Lorentz and transmission factors were calculated by an Olivetti Elea 6001/S computer. For the calculation of the transmission factors a cylindrical shape of the crystal has been assumed ($\mu R =$ 0·33). The atomic form factors were calculated by the computer using the Forsyth & Wells (1959) formula, with the constants given by Moore (1963).

Determination and refinement of the structure

The structure was first determined by a Patterson projection P(UV); successive Fourier syntheses $\varrho_o(xy)$, where all the peaks are well resolved, led to a disagreement index $R_{hk0} = 0.17$.

The z coordinates were found by generalized Patterson functions $_{C}P_{1}(UV)$ and $_{S}P_{1}(UV)$. All the coordinates were refined by differential syntheses (Booth, 1964), following the method described by Nardelli, Fava & Giraldi (1963). Isotropic temperature factors were used at this stage. A three-dimensional $(\varrho_o - \varrho_{Hv})$ (xyz) (where the subscript $_{Hv}$ means heavy atoms), gave maxima in satisfactory agreement with the positions of hydrogen atoms, calculated assuming a staggered form for hydrazine (Penney & Sutherland, 1934; Ferrari, Braibanti & Bigliardi, 1963; Ferrari, Braibanti, Bigliardi & Dallavalle, 1963; Ferrari, Braibanti, Bigliardi & Lanfredi, 1965). Also the hydrogen atoms of the methyl group can be located on density peaks, resembling roughy a nearly tetrahedral configuration of bonds around carbon. The total disagreement index was at this stage $R_{hkl} = 0.114$. At this point anisotropic temperature factors were introduced and refined (Nardelli, Fava & Giraldi, 1963). Differential syntheses and anisotropic temperature factor refinement were applied

Atom	x	$\sigma(x)$	У	$\sigma(y)$	Z	$\sigma(z)$
Zn	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C(1)	0.7486	0.0008	0.2820	0.0008	0.8862	0.0024
C(2)	0.7434	0.0012	0.4509	0.0011	0.7637	0.0034
N(1)	0.2428	0.0007	0.0440	0.0008	0.6445	0.0021
N(2)	0.1955	0.0007	0.1360	0.0007	0.3626	0.0021
O(1)	0.9138	0.0007	0.2232	0.0006	0.8438	0.0018
O(2)	0.5915	0.0007	0.2148	0.0007	0.0183	0.0024
Probable	position of h	ydrogen atom	IS *			
H(1)	0.6916		0.1039		0.4742	
H(2)	0.3365		0.0922		0.8270	
H(3)	0.3056		0.1509		0.1409	
H(4)	0.0913		0.2057		0.4112	
H(5)	0.5808		0.4220		0.6414	
H(6)	0.0922		0.4637		0.3278	
H(7)	0.1901		0.4898		0.0000	

Table 1. Atomic positional parameters

* Error undetermined

alternately. In a few cycles the agreement improved to $R_{hkl} = 0.093$ (observed reflexions); $R_{hkl} = 0.096$ without hydrogen atom contributions. In the three-dimensional $(\varrho_o - \varrho_{Hv})$ (xyz), maxima can be reasonably, but not certainly, assigned to the hydrogen atoms (Fig. 1).

The numerical results of the structural determination are given in Tables 1, 2, 3, 4. The standard deviations of distances and angles (Table 4) were calculated by the methods of Ahmed & Cruickshank (1953) and Darlow (1960) respectively. The coordinates of the hydrogen atoms are quoted with as many figures as those introduced in the last structure factor calculation. Their location can be considered as a reasonable hypothesis, consistent with the experimental data, and no assessment of the accuracy is possible; therefore

Fig. 1. $(\varrho_0 - \varrho_{H\nu})(xyz)$ viewed down [001]. Composite map; only those maxima are drawn which can be reasonably assigned to hydrogen atoms. Intervals every 0.05 e.Å⁻³, starting at 0.3 e.Å⁻³.

coordinates of the hydrogen atoms, and distances and angles involving hydrogen atoms as well, are quoted as obtained from the calculations, without any particular rounding off of the figures.

Discussion of the structure

Coordination complex and chains of complexes

A diagramatic projection of one layer of the structure, parallel to (001), is shown in Fig. 2. The complex $[Zn(N_2H_4)_{4/2}(CH_3COO)_2]$ is of octahedral type. The nitrogen atoms of the complex belong to four different hydrazine molecules. The distances between zinc and nitrogen are $Zn-N(1) = 2.179 \pm 0.007$ Å and Zn-N(2) = 2.206 ± 0.007 Å, and the distance between zinc and oxygen is $Zn-O(1)=2.147\pm0.005$ Å. These can be compared with corresponding distances in other octahedral complexes of zinc. Distances quoted in the literature are for Zn-N: 2·170 Å, 2·186 Å (Ferrari, Braibanti, Bigliardi & Lanfredi, 1965), 2.099 Å (Palenik, 1964), 2.15 Å (Ferrari, Braibanti & Bigliardi, 1963), 2.00 Å (Doyne & Pepinsky, 1957); for Zn-O: 2.123 Å, 2.075 Å (Montgomery & Lingafelter, 1964), 2.066 Å, 2.263 Å (Palenik, 1964), 2.10 Å (Ghose, 1964), 2.039 Å

Table 2. Thermal atomic parameters (Å²)*

	B_{11}	B_{22}	B ₃₃	B_{12}	B ₁₃	B_{23}
Zn	1.534	1.845	1.152	0.161	0.220	0.112
C(1)	1.772	1.800	0.897	0.043	0.165	0.110
C(2)	3.601	2.386	2.786	0.748	0.614	1.075
N(1)	1.434	2.382	0.752	0.328	0.046	0.269
N(2)	0.960	1.967	1.214	0.231	0.077	0.143
D(1)	2.325	2.012	1.591	0.530	0.611	0.761
D(2)	4.381	3.379	1.467	1.054	0.786	0·084

The hydrogen atoms have been given the last isotropic temperature factor of the atom to which they are bound:

	H(1)	H(2)	H(3)	H(4)	H(5)	H(6)	H(7)
В	1.65	1.65	1.50	1.50	2.65	2.65	2.65

* Error undetermined. Average and maximum thermal parameter shift in the last cycle: Zn|0.005| (av.), |0.008| (max.); C(1) |0.011|, |0.036|; C(2) |0.047|, |0.099|; N(1) |0.011|, |0.017|; N(2) |0.010|, |0.025|; O(1) |0.028|, |0.059|; O(2) |0.037|, |0.094|.

STRUCTURE OF CATENA-DI-µ-HYDRAZINE-ZINC DIACETATE

1		102 214	107 387		1 6 6-		108 <u>2</u> ,46	107 38	B 0 8-	1	<u>t</u> ;	10 <u>9</u> 3	10 <u>7</u>	h	1	£	10P 2 260	10 <u>P</u> 244 123	a 1_	ı '⊆ ; ;	10 E 47 84	10 <u>7</u> 60 84	1 7 7-	1 ! ? !	10 2	102 26 65) 3	х <u>4</u>	10	4 2 1	63 20
0 199 144 0 229 246 0 207 199 0	199 144 229 246 207 195 70 73 95 101	164 246 195 17- 73 101		5 57 0111	6 6 5 7 7 7-		104 93 117 120 154	115 105 34 116 108 138	8 8 0 0 1 1-	1-1-2-22	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31 20 120 61 381 67	37 41 70- 66 453 108	1-2-22-33-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	104 127 103 169 325 299 55 177	85 131 72 151 289 284 61 177	1 1- 2 2- 2 3- 3-	9-1 9-1 9-1 9-1 9-1 9-1 9-1	51 116 46 128 51 116 49 98	41 114 81 101 56 117 56 99	7 7- 0 1 1-	3- 1	96 96 274 51 269	79 75 261 62 277	4 4 5 5 5 5 6 6	6 - 1	2 1	52 03 1 18 1 45 23 1 70	50 86 11 13 76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	430 2 158 3 7 128 3 7 254 4 7 13 41 5 216 5 7 126 6 7	7- 3 7- 4 7- 5 7- 6 7-	7-		0000000000	40 74 97 126 186 65 131 100	49 75 100 125 176 69 123 103	12222333		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	249 264 373 208 231 92 224 172 131	202 249 384 198 228 96 229 171 138	3-4-4-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-		11111	103 219 88 145 58 86 166 83 116	93 215 99 152 37- 70 158 74 93	3 4- 4 5- 5	9- 1 9- 1 9- 1 9- 1 9- 1 9- 1	43 74 52 33 69	75 41 77 32 65 47 82	1-2-2-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-	3- 4 3- 4 3- 4 3- 4 3- 4 3- 4 3- 4 3- 4	336 205 96 64 200 206 49	322 192 111 64 183 187 55 232	0 0 1 1- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	7 1 7- 1 7 1 7 1 7- 1 7- 1		45 35 98 88 21	44 124 107 101 180 110
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	134 112 102 86 134 127 0 1 145 148 1 1 76 86 2 1 52 59 2 7 3	112 86 127 0 1 148 1 1 86 2 1 59 2 1	0 1		8 8 8- 8- 8-	000000	97 97 187 86 137	92 66 170 89 132 35	3- 4- 4 4- 5 5- 5 5-		, 1 1 1 1 1 1 1 1 1	178 122 152 277 117 130 55 208 113	100 114 159 273 111 128 45 188 119	5- 6- 6- 7- 7		1 1 1 1 1 1	162 79 97 135	42 26 151 93 99	1 1 1-1 1-1 2-1 2-1 2-1	10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1	59 57 43 46 37	91 74 58 43 62 57 21 29	344445555		162 162 206 159 159 189 189 189	19 164 47 209 154 82 175 37 53	2-22-3-3-4	7 - 1 7 - 1 7 - 1 7 - 1 7 - 1 7 - 1 7 - 1		80 31 45 07 73 87 64 43	77 12 35 58 7 69 46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 8- 0 115 4 8 0 43 4 8- 0 441 5 8 0 31 5 8- 0 124 6 8- 0 351 15	3 8- 0 4 8 0 4 8- 0 5 8 0 5 8- 0 6 8- 0	8- 0 8- 0 8- 0 8- 0 8- 0	00000		112 58 98 100 95	106 67 58 61 100 100	6 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	2 2-2-22	1 1 1 1 1 1	203 173 207 222 60 122 76 108	190 155 186 219 54 122 61 110	0011112	6 - 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 1 1 1 1 1	162 66 199 175 81 88 134 164	143 66 179 155 85 89 117 159	3- 1 3 1 4- 1 4 1	10 1 10 1 10 1 10 1	29	39 18 54 77	6- 6- 7- 7- 7-		105 196 67 67 50 50	109 188 64 81 63 48 62	*******	7 7- 7 7- 7 7- 7 7- 7		62 04 91 53 54 54	65 96 103 28 67 54 51 74
0 305 305 0 248 243 0 108 108 0 204 189 0 120 129 0 190 191 0 81 87 0 103 99 0 86 99	305 305 248 243 108 108 204 189 120 129 190 191 81 87 103 99 84 99	305 243 108 189 129 191 87 99 09		011223344	y 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		116 126 89 118 86	105 51 122 96 118 80 62 47 8	8- 8- 0 1	2-2-2-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3	T 1 1 1 1 1	97 	93 21 60 139 196 241 91	~~~~~	6	1 ,1 ,1 1 1 1 1	182 84 156 105 209 94 58	165 85 148 28 110 197 105 57	0 1 2 2- 3 3- 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	119 26 168 189 253 211 149 46	191 31 198 216 294 211 155 27 18	0011-	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	122	114 231 152 34 303	6 0 1 1 1	7- 3 8- 3 8- 3 8- 3 8- 3		70 57 58 34	55 83 101 96 22 121
0 81 87 5 0 54 62 0 0	61 87 5 54 62 0	62 0 10 1 424 1 135 2 212 2	5 0 1 1 2 2		9- 10 10 10- 10- 10-	00000	55 34 76 64 91	43 35 75 79 94		******	, T T T T T T T	497 169 207 33 242 195 62 297	518 169 211 4- 236 186 61 310	******		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 111 110 70 116 71 54 109 64	103 99 69 95 71 66 107 87	5- 6- 7-	0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0	184 76 259 125 91 162 42	103 72 250 119 02 161 35	2-22-3-3-		124 191 256 139 139 170 256	130 201 42 248 129 180 200 29	1-2-2-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-			NG 31 1775	67 19 63 98 25 18 79
0 160 166 3 0 283 284 4 0 255 239 0 232 213 0	160 160 3 283 284 4 255 239 232 232 213 50 1 168 170 58 72 156 145 145	166 3 284 4 239 213 50 1 170 72 145	3 · ·		10-	000		15 7 29)- } } } 	, , , , , , , , , , , , , , , , , , ,	, 1 1 1 1 1 1 1	191 46 176 252 159 138 136 154	193 61 173 256 143 134 134 130 152	6- 7- 7 001	6- 6- 7- 7- 7	1 1 1 1	57 67 76 106 117 61 76	84 83 111 107 41 64	0 0 1 1 - 1 - 2 - 2 -	1 2 1- 2 1 2 1- 2 1- 2 1- 2 1 2 1 2	285 55 254 198 31 120 45 184	377 81 289 262 35 124 72 212	• • • • • 5 5 5 5 4			124 74 90 129 159 62 171				2 28 3	14 10 19 19 17 19 19 19 17
0 126 129 0 46 52 0 0 89 95 1 1- 2 0 386 342 2- 0 94 104 3	126 129 46 52 0 89 95 1 1- 2 386 342 2- 94 104 3	129 52 0 95 1 1- 2 342 2- 104 3	0 1- 2 2- 3		000000	1 1 1 1 1	244 30 270 202 361 240	372 4- 376 198 470 244	5-6-6-7]-]-]]-]-]-]-]-	1 1 1 1 1	163 69 153 128 159 138 108	159 67 143 125 150 127 104	1-1-2-2-2-2-2-	7 7- 7- 7 7 7- 7-	1 1 1 1 1 1	162 92 199 150 150	149 75 180 41 27 159 97	2 2 3 3 - 3 3 4	1- 2 1- 2 1 2 1 2 1- 2 1- 2 1- 2	268 127 170 106 204 229 102	288 126 167 117 202 237 88	6- 6- 7- 7	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	149 61 71 93	140 59 78 101 84	0011-1-2		2 2 2 2 2 2 2 2 2	19897 .	42 53 75 4 72 1 21 21 21 21 21 21 21 21 21 21 21 21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	320 3- 229 4 186 4- 152 5 255 5- 137 6 161 6- 47 7	3- 4- 55- 6- 7		00000000	1 1 1 1 1 1 1 1	266 90 130 125 166 67 56 125	274 92 137 103 166 54 54 114	7- 7 8- 8	3 3- 3- 3- 3-	1 1 1 1	88 89 102 33 33	84 25 86 117 32 336	3 3- 3- 4 4- 4- 4-	7 7- 7- 7 7 7- 7-	1 1 1 1 1 1	140 57 228 49 159 153 153 61	1 35 60 215 40 162 142 141 59	4- 4- 5- 5- 5- 6	1 2 1- 2 1- 2 1 2 1- 2 1- 2 1- 2 1- 2 1-	235 166 136 84 134 122 177 78	246 162 116 76 132 97 172 79	0011112	5 - 2 5 - 5 5 - 5	133 201 90 141 91 90 121 251	126 186 93 142 94 74 119 254	2-2-3-3-4-4		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	17576134	15×8××5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	145 13 14 120 42 102		7- 8 8- 0 0	0 0 1 1-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111 78 52 228 47 401	112 91 71 289 43 590	01-1-2-22	4- 4 4- 4- 4- 4-	1 1 1 1 1	351 172 168 265 215 138 125 199	321 171 162 229 208 112 131 191	5- 5- 6- 7-	7 7- 7- 7 7- 7	1 1 1 1 1 1	44 95 40 76 84	50 91 24 59 72 76 72	6- 6- 7- 7- 7- 7-	1 2 1- 2 1- 2 1 2 1 2 1- 2 1- 2	39 125 123 79 52 146 84	36 111 121 79 49 147 85	2		71 128 130 161 151 96	77 111 124 168 48 137 50	001-12-2	10 10- 10 10- 10	2 - 2 - 2	4	73 73 66 89 87
0 266 231 1 0 283 252 1 0 67 76 1 0 285 263 2 0 285 263 2 0 195 175 2 0 162 142 2 0 162 142 3 0 162 142 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	231 1. 252 1 76 1. 263 2 233 2. 175 2 142 2 52 3	1 1 2 2 2 2 3 3	-	1 1- 1 1 1- 1- 1- 1- 1- 1- 1-	1 1 1 1 1 1	55 38 218 254 318 260 347 228	55- 53 240 299 387 302 394 224	2-3-3-3-4-4-4	4- 4 4- 4 4- 4 4-	11111	248 294 227 98 103 203	242 0 279 216 90 105 212 26	0011-1-2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1	79 106 95 84 104 152 67	76 106 73 69 100 147 67	0 0 1 1- 1 1- 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	132 64 309 234 150 268 222	145 82 343 240 173 270 229	4 - 5 - 5 - 6 -	5-22555	140 104 64 80 195 146 36	129 100 67 185 185 146 47 65	0 1 2 2-	00000	3 1 3 3 3	60 74 96 61	194 90 108 61 131
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71 105 86 67 54 73 85 52		3- 3- 4- 4- 5-	1- 1- 1 1- 1- 1- 1-	1 1 1 1 1 1 1 1 1	46 347 111 164 147 168 60	59 59 351 100 161 146 40 166 44-	* 5 - 5 - 6 - 6 - 6	4- 4 4- 4 4 4 4 4	1 1 1 1 1 1 1	159 159 199 80 140 75 68 115 41	199 156 183 64 143 76 60 98 40	2-2-3-3-4	8- 8- 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1	90 94 150 169 157 89	85 89 135 41 164 152 23 94	2- 2- 3- 3- 3- 4	7 2 2 - 2 2	192 281 116 153 65 273 135 118	211 272 113 133 78 255 126 109	6- 7- 7 00	5- 2 5- 2 5- 2 5- 2 6- 2	64 73 78 50 64 215	73 89 94 57 58 193	3-4-55-6-	00000000		10 24 37 41 53 63 12	91 102 128 129 197 174 71 101
0 120 100 0 133 122 0 188 164 0 163 143 0 117 112 0 249 219 0 47 30-	120 100 133 122 188 164 163 143 117 112 249 219 47 30-	100 122 164 143 112 219 30-			1- 1- 1 1- 1- 1- 1- 1-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	203 189 70 54 171 206	187 183 72 50 152 217 17 188	7 7- 7 8- 8	4 4 4- 4 4	1 1 1 1 1 1 1	69 63 109 37 78	72 60 109 42 74 52	4- 4- 5- 6	8- 8- 8- 8- 8- 8-	1 1 1 1	83 38 49 54 34	80 36 59 32 62 32	4- 4- 5- 5- 5- 6-	2 - 2 2 - 2	66 •235 98 121 80 69 83 145	60 221 91 113 77 59 70 131	1-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2	191 92 113 129 171 218 97 69	184 93 113 112 170 205 88 44-	7-	0	3 - 3 1 3 2 3 2 3 1	61 79 19	93 213 216 78 233 180
0 78 0 153 1	47 78 153 1	1	76 39	7 7-	i- 1-	1	129	110	0 0	5 5-	1 1	358 63	361 65	0 0	9 9-	1 1	90 100 1	88 102	6 6	2- 2 2- 2 2- 2	178 86 125	174 72 122	3 3- 3	6 2 6 2 6- 2	115 140 104	101 143 93	1- 2 2-	1	3 3 3 1	84 27 64	91 15- 178

Table 3. Observed and calculated structure factors

Table	3	(cont.)
rabic	2	(0000.)

2	¥	£	10 2	10 <u>7</u> 2	F	Ł	ē	10 <u>7</u> 9	10 <u>7</u> 0	¥	Ł	£	10 <u>7</u> 9	10 <u>7</u> 9	Ł	F	<u></u>	10 <u>P</u> 2	10 <u>P</u>	h	¥	<u>e</u> .	107	10 <u>7</u>	2	¥	£	10 <u>7</u>	10 <u>P</u>	k	¥	ş	'' <u>"</u> 1	10 F
2 2- 3-	1- 1- 1	333	164 18 154 105	160 15 139 84	2-2-2-	2 2 - 2 - 2 - 2 -		91 151 164 35	78 141 163 35	1 - 2 - 2 -	3- 3- 3	333	206 166 218 130	200 146 194 114	1 1- 2 2-	4- 4- 4	333	1 32 54 107 46	119 42 1C4 42	2 2- 2 2-	555-5-	333	54 104 107 106	55 91 113 100	2 2- 3 3-	6- 6- 6	3333	113 72 44 76	133 75 47 76	4 4 5 5	7 7- 7 7-	333	1 42	27 54 75 4
3-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4	1		70 135 166 211 146 110	73 120 146 196 145 103	3-3-4-	2 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		100 184 30 178 159 136	97 164 26 179 147 122	2- 3- 3- 3-		3333	120 159 103 95 160	83 113 152 96 95 150	2-3-3-3-	4-	3333	245 136 109 95 178	216 132 102 95 157))-) - 4 4-	7 5- 5- 5 5 5 5	333	115 78 161 57 156	104 88 150 58 151) 	6- 6 6- 6-		70 33 105 78 10	79 45 111 105 18	с с т т т	8		12 R.J	****
	1 1- 1- 1		82 143 164 137 23	80 129 160 125 25	4 4- 5 5- 5	2-2-22		131 140 76 106	120 133 69 4 115	4 4 4 - 5	3-3-		114 53 74 209 39	1C4 145 73 198 40	4 4- 4 - 5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3333	112 148 18 117 44	101 133 17 103 46	4-5-5-	5- 5- 5- 5-	333	91 64 49 119 93	111 61 62 126 127	5	6 6- 7	3	64 44 78	72 72 79			*****	12 12 E	r ar ar ar
6- 6- 7- 7	1]	58 67 80	54 79 78 62 36	5-6-6-7-	2-2-2-2-2-2-2		36 17 56 53 42	32 16 58 66 43 82	5- 5- 6- 6	3-		87 34 50 41 79 52	78 39 51 50 82 69	5- 5- 6- 6	4- 4- 4-	333	78 59 34 70	94 66 42 107	6- 6 C	5- 5- 6	3	3C 26	42 50	1 1-1-2	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		63 126 94 119 60	60 133 109 131			~~~~	1 1 4 1	1380
001111	2-2-2-2-2-]]]]	198 227 234 200 308 121	175 212 204 182 304 107	7 C 0 1 1-	2- 3- 3- 3		90 193 130 190	20 86 163 105 160	6- C 0 1	3- 4 4- 4	3	139 35 61 97	21 132 30 61- 79	0 0 1 1- 1	5- 5- 5-	333333	142 106 92 80 113 16	124 94 83 77 101 6	011-122-	6- 66- 66- 5	3	99 116 123 85 110 47 54	97 115 109 88 114 48 89	2-2-3-3-3-3-3-3-	7-7-7-7		89792 33 35	*****	ent . ha			11111	*****

Table 4. Main interatomic distances and angles*

Hydrazine molecul N(1)-N(2) N(1) ₁₁₁ '-H(1) N(1) ₁₁₁ '-H(2) ₁₁₁ ' N(2)-H(3) N(2)-H(4)	e: = $1.458 \pm 0.011 \text{ Å}$ = 1.47 Å = 1.03 = 1.17 = 0.98	H(4)-N(2)-H(3) H(2) ₁₁₁ '-N(1) ₁₁₁ '-H(1) Zn-N(2) _{X1} '-N(1) _{X1} ' Zn _{V1} -N(1) _{X1} '-N(2) _{X1} '	$= 124.7^{\circ}$ = 111.4 = 114.0 ± 0.4 = 115.9 ± 0.3						
Coordination com	nlex ·								
$Z_{nv}-N(1)x'$ $Z_{nv}-N(2)v$ $Z_{nv}-O(1)vvv$	$=2.179 \pm 0.007 \text{ Å}$ =2.206 ± 0.007 =2.147 + 0.005	N(1) _{III} '-O(1) _{VII} N(2) _{IV} '-O(1) _{VII}	$= 3.194 \pm 0.010 \text{ Å} \\= 3.175 \pm 0.008$						
$N(1)_{X}-O(1)_{VII}$ N(2)_V-O(1)_{VII}	$= 2 \cdot 918 \pm 0.007$ = 2.979 ± 0.009	$O(1)_{II}-Zn-N(1)_{VIII}'$ $O(1)_{II}-Zn-N(2)_{I}'$	$=95.2 \pm 0.2^{\circ} \\=93.7 \pm 0.2$						
$N(1)_{X}-N(2)_{V}$ $N(1)_{X}-N(2)_{IV}$	$= 3 \cdot 102 \pm 0.012 = 3 \cdot 100 \pm 0.007$	$N(1)_{VII}-Zn-N(2)$ Zn-O(1) _{II} -C(1) _{II}	$= 90.0 \pm 0.3 \\= 129.7 \pm 0.5$						
Acetate group:									
$C(1)_{VII} - O(1)_{VII}$ $C(1)_{VII} - O(2)$	$= 1.264 \pm 0.007 \text{ Å}$ = 1.250 + 0.009	$O(1)_{II}-C(1)_{II}-O(2)_{XI}$ $C(2)_{II}-C(1)_{II}-O(1)_{II}$	$= 125.9 \pm 0.7^{\circ}$ = 116.2 ± 0.7						
$C(1)_{VII} - C(2)_{VII}$	$=1.530\pm0.012$	$C(2)_{II} - C(1)_{II} - O(2)_{XI}$	$=117.9 \pm 0.6$						
$O(1)_{VII} - O(2)$	$=2.239 \pm 0.007$ -1.18 Å	$C(1)_{II}-C(2)_{II}-H(5)_{II}$ $C(1)_{II}-C(2)_{II}-H(6)_{II}'$	$=93.8^{\circ}$ = 121.2						
$C(2)_{VII}-H(5)_{VII}$	=1.10 A =1.29	$C(1)_{II} - C(2)_{II} - H(7)_{II}$	=94.7						
$C(2)_{VII} - H(7)_{VII}'$	=1.16	$H(5)_{II}-C(2)_{II}-H(6)_{II}$	=138.0						
		$H(5)_{II}-C(2)_{II}-H(7)_{II}$ $H(6)_{II}'-C(2)_{II}-H(7)_{II}'$	= 137.0 = 76.1						
Intermolecular neig	ghbours:								
$O(2)_{IV}' \cdots N(1)_{III}$	$' = 2.988 \pm 0.009 \text{ Å}$	$C(2)_{VII} \cdots N(2)_{VII}$	$= 3.534 \pm 0.011 \text{ Å}$						
$O(2)_{IV}' \cdots N(2)_{IV}'$	$f = 2.985 \pm 0.009$	$\mathbf{H}(5)_{\mathbf{VII}}\cdots\mathbf{H}(5)_{\mathbf{VII}}$	=2.14 A						
$C(2)_{VII} \cdots C(2)_{VII}$	$f = 4.033 \pm 0.014$ - 3.894 + 0.014	$N(1)_{111}$ · · · · $O(2)_{12}$ · · · $N(2)_{12}$	$r' = 62.6 \pm 0.2^{\circ}$						
$C(2)_{VII} \cdots C(1)_{V'}$	$=4.070\pm0.011$	$O(2)_{IV}' \cdots N(1)_{III}' - H(2)_{III}'$	$=14.3^{\circ}$						
$O(2)_{1X}' \cdots N(1)_X$	$=2.924\pm0.010$	$O(2)_{IV}' \cdots N(2)_{IV}' - H(3)_{IV}'$	=25.9						
Asymmetric units $(0 \le x \le 1, 0 \le y \le 0.5, 0 \le z \le 1)$									
No label	x v z	VII x	y -1+z						
I'	-x $-y$ $-z$	VII' $1-x$ $1-$	y -z						
II –	1+x y $-1+z$	VIII' $-x$ $-x$	$y \qquad 1-z$						

1	-1	y	-2	V 11	1 7		~
II	-1+x	y	-1+z	VIII′	-x	-y	1 - z
II′	-x	1 - y	-z	IX'	2-x	- y	-z
III	x	-1 + y	Z	Х	1+x	У	-1+z
IΙΙ΄	1-x	-y	1 - z	X'	2-x	1-y	-z
IV′	1-x	-y	<i>z</i>	XI	-1+x	У	Z
v	1+x	y	Z	XI′	-x	1-y	1 – <i>z</i>
V′	2-x	1 - v	1-z	XII	1+x	-1+y	Z
VI	x	ý	1 + z	XII′	2-x	-y	1 - z

* Distances and angles involving hydrogen atoms are to be considered only as probable and approximate.

† Subscripts of asymmetric units make it possible to identify the atoms in the diagrams. The subscripts are omitted in the text.

(Nardelli, Fava & Giraldi, 1963), 2·12 Å (Iitaka, Oswald & Locchi, 1962), 2·16 Å (Nowacki & Silverman, 1961), 2·14 Å, 2·15 Å (Doyne & Pepinsky, 1957), 2·18 Å, 2·17 Å (Niekerk, Schoening & Talbot, 1953). The comparison shows how the bonds between zinc and nitrogen, in the present case, are the longest that have been found. Therefore that bond can be considered as a weak covalent bond or an ion-dipole bond. The Zn–O bond distance agrees very well with the other distances found in octahedral complexes of zinc. Following the arguments of Nowacki & Silverman (1961), who consider the bond Zn–O to be very likely electrovalent in octahedral complexes, the character of this bond can be regarded as electrovalent also in the present compound.

In the clinographic projection of part of the structure (Fig. 3), there appear clearly the chains of complexes. Two successive octahedra of the same chain are linked to one another by two bridges formed by hydrazine molecules. The distance between two nitrogen atoms of the same hydrazine molecule is $N(1)-N(2)=1.458 \pm 0.011$ Å, which agrees well with the averaged value 1.461 ± 0.009 Å (Ferrari, Braibanti, Bigliardi & Dal-

lavalle, 1963) and with the value 1.45 Å found by Liminga & Olovsson (1964) at -165 °C. Hydrazine is in the staggered form. The azimuthal angle $\varphi = \pm 77.6^{\circ}$ can be found by projecting the bonds Zn-N(1) and Zn-N(2) on the plane normal to the line N(1)-N(2) (Fig. 4), by assuming that along the directions of the bonds Zn-N(1) and Zn-N(2) there are disposed the lone pairs of the two tetrahedral groups

(Ferrari, Braibanti & Bigliardi, 1963). When calculated from the projection of the bonds N-H on the plane normal to N(1)-N(2), the rotation is found to be 46° between H(1) and H(3), and 78° between H(2) and H(4) ($\varphi_{av}=62^\circ$). This result is satisfactory if it is taken into account that the hydrogen atoms can be located very roughly. The angle $\varphi = 62^\circ$ is comparable to $\varphi =$ $58\cdot5^\circ$ obtained by Liminga & Olovsson (1964). The two hydrazine molecules, facing each other, are enantiomorphous and can be distinguished as follows: *r*form, if the rotation of the upper half molecule, from

Fig. 2. One layer of the structure, parallel to (001), viewed down [001]. Only complexes with their centres at z=0 are represented. Open circles indicate the probable positions of hydrogen atoms. Intermolecular hydrogen bonds are dotted.

the *cis*-position, is *right*-handed (φ positive); *l*-form, if the rotation of the upper half molecule, from the *cis*-position, is *left*-handed (φ negative).

The distances and angles indicate that the coordination octahedron is more distorted in this than in the other compounds of the type $[Zn(N_2H_4)_2]_nX_{2n}$ (Table 5). On the contrary, the rotation (azimuthal angle φ)

Fig. 3. Chains of complexes. Only chains along the lines [002] and [102] are drawn.

Fig. 4. Two enantiomorphous hydrazine molecules (r- and lform). The azimuthal angle φ is obtained by projecting the bonds Zn-N on the plane normal to the bond N(1)-N(2).

between the two NH₂ groups forming the hydrazine molecule is practically constant in the different compounds; also the angles $Zn \cdots N(2) - N(1) = 114 \cdot 0 +$ 0.4° and $Zn \cdots N(1) - N(2) = 115.9 \pm 0.3^{\circ}$, between the directions of the metal-nitrogen bonds and that of the nitrogen-nitrogen bond of hydrazine, are practically constant, irrespective of the anion and metal cation forming the complex. It seems that the bonds in hydrazine and formed by hydrazine are rather rigidly localized. The repeat distance along the chain (i.e. c of the unit cell) is equal for the acetate and chloride, but in the isothiocyanate, it is longer than in the other two. The lengthening of the repeat distance in the complex with the isothiocyanate group, with respect to the complexes with chlorine and the acetate group, is common to the structures of the complexes with Cd or Mn (Ferrari, Braibanti, Bigliardi & Lanfredi, 1963).

Carboxylate group

In free carboxylic acids (Nardelli, Fava & Giraldi, 1962) the distance C-OH is greater than the distance C=O, and this difference has been interpreted by Pauling (1960) on the basis of the difference in singledouble bond character of the two bonds. The predicted configuration for the carboxylate ion (Pauling, 1960) is that with the angle O-C-O=125.27° and equal distances between carbon and oxygen. Our results, C(1)-O(1)=1.264 \pm 0.007 Å and C(1)-O(2)=1.250 \pm 0.009 Å, are in favour of an almost purely ionic form of the carboxylate group in the present compound, due to the resonance between the structures

Not all the results, however, which have recently appeared confirm this point of view. In general, only when the environments of O(1) and O(2) are equal are the distances C(1)-O(1) and C(1)-O(2) equal or very close to each other: C(1)-O(1) = 1.248 Å, 1.250 Å, C(1)-O(2) = 1.236 Å, 1.250 Å (Hanic, Štempelová & Hanicová, 1964); C(1)-O(1)=1.247 Å, 1.231 Å, C(1)-O(2) = 1.247 Å, 1.231 Å (Barclay & Kennard, 1961); C(1)-O(1)=1.261 Å, C(1)-O(2)=1.265 Å (Marsh, 1958). When, however, O(1) is bound to the metal and O(2) is bound through hydrogen bonds to other atoms, C(1)-O(1) is shorter than C(1)-O(2): e.g. C(1)-O(1) =1.275 Å and C(1)-O(2) = 1.226 Å or C(1)-O(1) = 1.291Å and C(1)-O(2) = 1.243 Å (Freeman, Snow, Nitta & Tomita, 1964); C(1)-O(1)=1.311 Å and C(1)-O(2)=1.206 Å (Freeman, Robinson & Schoone, 1964); C(1)-O(1) = 1.303 Å and C(1) - O(2) = 1.224 Å (Bryan, Poljak & Tomita, 1961); on the other hand, in the compound Ni(NH₂CH₂CH₂COO)₂. 2H₂O (Jose, Pant & Biswas, 1964), it has been observed that the distance C(1)-O(1) (1.215 Å) is shorter than C(1)–O(2) (1.279 Å), although O(1) is bound to the metal and O(2) is not bound.

O(1) The group C(2)-C(1) is planar. The plane is O(2)

represented by: 1.91353x + 2.72117y + 3.66530z - 2.85146 = 0 (Schomaker, Waser, Marsh & Bergman, 1959). Deviations from planarity are well within the e.s.d.'s $[(\overline{\varDelta d}^2)^{\frac{1}{2}} = \pm 0.0003 \text{ Å}]$. The angles $O(1)-C(1)-O(2) = 125.9 \pm 0.7^{\circ}$, $C(2)-C(1)-O(1) = 116.2 \pm 0.7^{\circ}$ and $C(2)-C(1)-O(2) = 117.9 \pm 0.6^{\circ}$ are regular with respect to the values obtained with other carboxylates. The angles O(1)-C(1)-O(2), C(2)-C(1)-O(1), C(2)-C(1)-O(2)-O(2) have been found to be:

124·3°, 117·4°, 118·3° or

- 122.8°, 117.5°, 119.7° (Freeman, Snow, Nitta & Tomita, 1964);
- 127.8°, 115.7°, 116.4° or
- 123.3°, 118.9°, 117.2° (Hanic, Štempelová & Hanicová, 1964);
- 127·3°, 115·0°, 118·1° or
- 122.9°, (Barclay & Kennard, 1961);
- 122.7°, 120.9°, 116.9° (Bryan, Poljak & Tomita, 1961);
- 125.5°, 117.4°, 117.1° (Marsh, 1958).

In fact, O(1)–C(1)–O(2) is in general the greatest of the three, except in $C_6H_{10}N_3O_4$. CuCl . $1\frac{1}{2}H_2O$ where O(1)–C(1)–O(2)=121·7° and C(2)–C(1)–O(2)=125·5° (Freeman, Robinson & Schoone, 1964) and again in Ni (NH₂CH₂CH₂COO)₂ . 2H₂O where O(1)–C(1)–O(2)=122·7° and C(2)–C(1)–O(1)=125·9° (Jose, Pant & Biswas, 1964). Also the distance C(1)–C(2)=1·530 \pm 0·012 Å is regular [C(1)–C(2)=1·545 Å (Jose, Pant & Biswas, 1964); 1·498 Å, 1·541 Å (Freeman, Robinson & Schoone, Robinson & Schoone, 1964); 1·511 Å (Freeman, Robinson & Schone, 1964);

1964); 1.525 Å, 1.549 Å (Hanic, Štempelová & Hanicová, 1964); 1.540 Å (Barclay & Kennard, 1961); 1.491 Å (Bryan, Poljak & Tomita, 1961); 1.523 Å (Marsh, 1958)], but sometimes the carbon-carbon distance, adjacent to a carboxylate group, is found to be significantly shortened [C(1)-C(2)=1.467 Å (Barclay & Kennard, 1961)].

Interchain contacts

The shortest interchain distances are $O(2) \cdots N(1) = 2.988 \pm 0.009 \text{ Å}$ and $O(2) \cdots N(2) = 2.985 \pm 0.009 \text{ Å}$ (Fig. 5). These distances $O \cdots N$ can be considered as weak hydrogen bonds directed towards two nitrogen

Fig. 5. Intermolecular hydrogen bonds between adjacent chains. The two chains involved are the same as in Fig. 5.

Table 5. Comparison between corresponding distances and angles in the compounds $[Zn(N_2H_4)_2]_nX_{2n}$

		X = Cl(a)	$X = (NCS)^* (b)$	$X = (CH_3COO)^{\dagger}(c)$
	N(1)-N(2) (hydrazine)	1·46 Å	1·47 Å	1·458 Å
	Zn-N(1) Zn-N(2)	2.15	2·16 2·18	2.179
	Zn-X	2.578	2·19*	2·147†
	c repeat distance	4.13	4·21	4.14
	нн н			
	\times \times $/$			
φ (rotation	N—N)	74°	74°	77·6°
	н			
	Zn - N(2) - N(1)) 1170] 1100	114·0°
	Zn-N(1)-N(2)	} 117	} 118	115·9°
	X-Zn-N(1)	} 90°	} 89°∗	95·2°†
	X-Zn-N(2)	J	J	93.7 1
	* Bound	to the metal through r	ntrogen atom.	

† Bound to the metal through oxygen atom.

- (a) Ferrari, Braibanti & Bigliardi (1963).
- (b) Ferrari, Braibanti, Bigliardi & Lanfredi (1965).
- (c) Present work.

atoms of one octahedron in an adjacent chain. The atoms H(2) and H(3) are only slightly out of the line joining O(2) to N(1) and O(2) to N(2), respectively.

We wish to thank Professor L. Cavalca for facilities on the Olivetti Elea 6001/S computer of the Centro Calcolo of the University of Parma and the Consiglio Nazionale delle Ricerche, Rome, for financial aid, which has made the present work possible.

References

- AHMED, F. R. & CRUICKSHANK, D. W. J. (1953). Acta Cryst. 6, 385.
- BARCLAY, G. A. & KENNARD, C. H. L. (1961). J. Chem. Soc. p. 5244.
- BOOTH, A. D. (1946). Trans. Faraday Soc. 42, 444.
- BRAIBANTI, A., BIGLIARDI, G., LANFREDI, A. M. & CAMEL-LINI, M. (1964). Z. Kristallogr. 120, 261.
- BRYAN, R. F., POLJAK, R. J. & TOMITA, K. (1961). Acta Cryst. 14, 1125.
- DARLOW, S. F. (1960). Acta Cryst. 13, 683.
- DOYNE, T. & PEPINSKY, R. (1957). Acta Cryst. 10, 438.
- FERRARI, A., BRAIBANTI, A. & BIGLIARDI, G. (1962). Z. Kristallogr. 117, 241.
- FERRARI, A., BRAIBANTI, A. & BIGLIARDI, G. (1963). Acta Cryst. 16, 498.
- FERRARI, A., BRAIBANTI, A., BIGLIARDI, G. & DALLAVALLE, F. (1963). Z. Kristallogr. 119, 284.
- FERRARI, A., BRAIBANTI, A., BIGLIARDI, G. & LANFREDI, A. M. (1963). Gazz. chim. ital. 93, 937.
- FERRARI, A., BRAIBANTI, A., BIGLIARDI, G. & LANFREDI, A. M. (1965). Acta Cryst. 18, 367.
- FORSYTH, J. B. & WELLS, M. (1959). Acta Cryst. 12, 412.

- FREEMAN, H. C., ROBINSON, G. & SCHOONE, J. C. (1964). Acta Cryst. 17, 719.
- FREEMAN, H. C., SNOW, M. R., NITTA, I. & TOMITA, K. (1964). Acta Cryst. 17, 1463.
- GHOSE, S. (1964). Acta Cryst. 17, 1051.
- HANIC, F., ŠTEMPELOVÁ, D. & HANICOVÁ, K. (1964). Acta Cryst. 17, 633.
- IITAKA, Y., OSWALD, H. R. & LOCCHI, S. (1962). Acta Cryst. 15, 559.
- JOSE, P., PANT, L. M. & BISWAS, A. B. (1964). Acta Cryst. 17, 24.
- LIMINGA, R. & OLOVSSON, I. (1964). Acta Cryst. 17, 1523.
- MARSH, R. E. (1958). Acta Cryst. 11, 654.
- Montgomery, H. & Lingafelter, E. C. (1964). Acta Cryst. 17, 1295.
- MOORE, F. H. (1963). Acta Cryst. 16, 1169.
- NARDELLI, M., FAVA, G. & GIRALDI, G. (1962). Acta Cryst. 15, 737.
- NARDELLI, M., FAVA, G. & GIRALDI, G. (1963). Acta Cryst. 16, 343.
- NIEKERK, J. N. VAN, SCHOENING, F. R. L. & TALBOT, J. H. (1953). Acta Cryst. 6, 720.
- Nomenclature of Inorganic Chemistry (1959). Paragraph 7.42. London: Butterworths.
- NOWACKI, W. & SILVERMAN, J. N. (1961). Z. Kristallogr. 115, 21.
- PALENIK, G. J. (1964). Acta Cryst. 17, 696.
- PAULING, L. (1960). The Nature of the Chemical Bond. 3rd Ed. p. 276. Ithaca: Cornell Univ. Press.
- PENNEY, W. G. & SUTHERLAND, G. B. B. M. (1934). J. Chem. Phys. 2, 492.
- SCHOMAKER, V., WASER, J., MARSH, R. E. & BERGMAN, G. (1959). Acta Cryst. 12, 600.

Acta Cryst. (1965). 19, 555

Die Struktur des Natrium-hexametaphosphates $Na_6(P_6O_{18})$. $6H_2O_{18}$

VON K.-H. JOST

Institut für Anorganische Chemie der Deutschen Akademie der Wissenschaften zu Berlin, Berlin-Adlershof, Deutschland

(Eingegangen am 12. Januar 1965)

The structure of Na₆(P₆O₁₈). 6H₂O, crystallizing in space group *Ccma* with unit-cell dimensions a=10.58, b=18.54, c=10.48 Å, was determined by direct methods. The anion [P₆O₁₈]⁶⁻ forms a ring of six PO₄ tetrahedra which are connected at the corners.

Bis vor kurzem waren an Phosphaten mit ringförmigem Anion nur Tri- und Tetrametaphosphate bekannt. Von einigen dieser Verbindungen wurde die Struktur untersucht: (NH₄)₄P₄O₁₂ (Romers, Ketelaar & Mac-Gillavry, 1951; Cruickshank, 1964), LiK₂P₃O₉. H₂O (Eanes & Ondik, 1962), Na₃P₃O₉ (Ondik, 1963), Na₄P₄O₁₂. 4H₂O (Ondik, Block & MacGillavry, 1961; Ondik, 1964) und Na₂H₂P₄O₁₂ (Dornberger-Schiff, 1964; Jarchow, 1964). Auf Grund von Papierchromatogrammen vermuteten Van Wazer & Karl-Kroupa (1956), dass es auch höhere Metaphosphate gibt. Erstmals isoliert und chemisch eindeutig als Metaphosphate gekennzeichnet wurden diese Substanzen von Thilo & Schülke (1963), die aus Grahamschem Salz kristallisierte Penta- und Hexametaphosphate gewannen und papierchromatographisch auch Hepta- und Oktametaphosphat nachwiesen. In der vorliegenden Arbeit wurde das gegen hydrolytischen Angriff besonders beständige Hexametaphosphat in Form des Hydrates Na₆P₆O₁₈. 6H₂O untersucht, dessen Anion also